History of the Internet.

The history of the Internet begins with the development of electronic computers in the 1950s. Initial concepts of packet networking originated in several computer science laboratories in the United States, but the first recorded description of the social interactions that could be enabled through networking was a series of memos written by J.C.R. Licklider of MIT in August 1962 discussing his “Galactic Network” concept. He envisioned a globally interconnected set of computers through which everyone could quickly access data and programs from any site. In spirit, the concept was very much like the Internet of today. Licklider was the first head of the computer research program at DARPA. Leonard Kleinrock at MIT published the first paper on packet switching theory in July 1961 and the first book on the subject in 1964. Kleinrock convinced Roberts of the theoretical feasibility of communications using packets rather than circuits, which was a major step along the path towards computer networking. The other key step was to make the computers talk together. To explore this, in 1965 working with Thomas Merrill, Roberts connected the TX-2 computer in Mass. to the Q-32 in California with a low speed dial-up telephone line creating the first (however small) wide-area computer network ever built. The result of this experiment was the realization that the time-shared computers could work well together, running programs and retrieving data as necessary on the remote machine, but that the circuit switched telephone system was totally inadequate for the job. Kleinrock’s conviction of the need for packet switching was confirmed.

Unlike technologies such as the light bulb or the telephone, the Internet has no single “inventor.” Instead, it has evolved over time. The Internet got its start in the United States more than 50 years ago as a government weapon in the Cold War. For years, scientists and researchers used it to communicate and share data with one another. Today, we use the Internet for almost everything, and for many people it would be impossible to imagine life without it.On October 4, 1957, the Soviet Union launched the world’s first manmade satellite into orbit. The satellite, known as Sputnik, did not do much: It tumbled aimlessly around in outer space, sending blips and bleeps from its radio transmitters as it circled the Earth. Still, to many Americans, the beach-ball-sized Sputnik was proof of something alarming: While the brightest scientists and engineers in the United States had been designing bigger cars and better television sets, it seemed, the Soviets had been focusing on less frivolous things—and they were going to win the Cold War because of it.

After Sputnik’s launch, many Americans began to think more seriously about science and technology. Schools added courses on subjects like chemistry, physics and calculus. Corporations took government grants and invested them in scientific research and development. And the federal government itself formed new agencies, such as the National Aeronautics and Space Administration (NASA) and the Department of Defense’s Advanced Research Projects Agency (ARPA), to develop space-age technologies such as rockets, weapons and computers.

Scientists and military experts were especially concerned about what might happen in the event of a Soviet attack on the nation’s telephone system. Just one missile, they feared, could destroy the whole network of lines and wires that made efficient long-distance communication possible. In 1962, a scientist from M.I.T. and ARPA named J.C.R. Licklider proposed a solution to this problem: a “galactic network” of computers that could talk to one another. Such a network would enable government leaders to communicate even if the Soviets destroyed the telephone system.

In 1965, another M.I.T. scientist developed a way of sending information from one computer to another that he called “packet switching.” Packet switching breaks data down into blocks, or packets, before sending it to its destination. That way, each packet can take its own route from place to place. Without packet switching, the government’s computer network—now known as the ARPAnet—would have been just as vulnerable to enemy attacks as the phone system.

By the end of 1969, just four computers were connected to the ARPAnet, but the network grew steadily during the 1970s. In 1971, it added the University of Hawaii’s ALOHAnet, and two years later it added networks at London’s University College and the Royal Radar Establishment in Norway. As packet-switched computer networks multiplied, however, it became more difficult for them to integrate into a single worldwide “Internet.”

By the end of the 1970s, a computer scientist named Vinton Cerf had begun to solve this problem by developing a way for all of the computers on all of the world’s mini-networks to communicate with one another. He called his invention “Transmission Control Protocol,” or TCP. (Later, he added an additional protocol, known as “Internet Protocol.” The acronym we use to refer to these today is TCP/IP.) One writer describes Cerf’s protocol as “the ‘handshake’ that introduces distant and different computers to each other in a virtual space.”

How it Works

 The Internet works because open standards allow every network to connect to every other network.

This is what makes it possible for anyone to create content, offer services, and sell products without requiring permission from a central authority.

It levels the playing field for everyone and it’s the reason why we have a rich diversity of applications and services that many of us enjoy today.

How The Internet Evolved?

 The Internet is evolving. The majority of end-users perceive this evolution in the form of changes and updates to the software and networked applications that they are familiar with, or with the arrival of entirely new applications that change the way they communicate, do business, entertain themselves, and so on. Evolution is a constant feature throughout the network ‘stack’
  • Fundamental discoveries in optical networking that allow ever more bandwidth to be obtained from deployed fibre-optic cables
  • New standards for wired and wireless link technologies (such as 100 gigabit Ethernet and LTE)
  • New congestion control algorithms, improved security infrastructures: these are all examples of the kind of evolution.

What’s the infrastructure of the Internet like?

The Internet is that it’s a network of networks that needs to operate around the world as if it were one.

Like policy, the technical coordination of the Internet has common characteristics:

  • Open,
  • Independent,
  • Run by non-profit membership organizations that work together to meet the needs everyone.

This self-regulation has been the key to the successful growth of the Internet and is flexible enough to adapt to changing future needs.

Leave a comment